190 research outputs found

    SkÄneGemensamt Melior IS-integration vid SkÄnes Universitetssjukhus

    Get PDF
    Region SkÄne har slagit samman SkÄnes tvÄ största sjukhus vilket har bemötts pÄ mÄnga olika sÀtt, bÄde positiva och negativa. Vi anser att sjukvÄrden i SkÄne Àr av stort allmÀnintresse och har dÀrför valt att granska hur integrationen av journalsystemen utförts vid sammanslagningen, detta genom projektet SkÄneGemensamt Melior. Journalsystemens kompatibilitet Àr starkt kopplat till patientsÀkerheten. För att utföra denna analys kommer vi att tillÀmpa Henningssons Ramverk för IS-integration vid sammanslagningar samt pröva ramverkets applicerbarhet inom den offentliga hÀlso- och sjukvÄrdssektorn. Resultatet av vÄr forskning visar att ramverket till stor del Àr applicerbar inom denna sektor. Inom sammanslagningen och projektet SkÄneGemensamt Melior Äterfinns samtliga dimensioner för att enligt Henningsson vara en fullgod integration. Dock kan vi utifrÄn ramverket dra slutsatsen att projektet till en allt för stor del fortlöpt reaktivt vilket lett till större komplikationer Àn nödvÀndigt. Vi kan Àven dra slutsatsen att framtagandet av kravspecifikationen varit bristfÀllig dÄ kompetensen ej varit tillrÀcklig inom Region SkÄne

    Individual heterogeneity and senescence in Silvereyes on Heron Island

    Get PDF
    Individual heterogeneity and correlations between life history traits play a fundamental role in life history evolution and population dynamics. Unobserved individual heterogeneity in survival can be a nuisance for estimation of age effects at the individual level by causing bias due to mortality selection. We jointly analyze survival and breeding output from successful breeding attempts in an island population of Silvereyes (Zosterops lateralis chlorocephalus) by fitting models that incorporate age effects and individual heterogeneity via random effects. The number of offspring produced increased with age of parents in their first years of life but then eventually declined with age. A similar pattern was found for the probability of successful breeding. Annual survival declined with age even when individual heterogeneity was not accounted for. The rate of senescence in survival, however, depends on the variance of individual heterogeneity and vice versa; hence, both cannot be simultaneously estimated with precision. Model selection supported individual heterogeneity in breeding performance, but we found no correlation between individual heterogeneity in survival and breeding performance. We argue that individual random effects, unless unambiguously identified, should be treated as statistical nuisance or taken as a starting point in a search for mechanisms rather than given direct biological interpretation

    Experimentally increased brood size accelerates actuarial senescence and increases subsequent reproductive effort in a wild bird population

    Get PDF
    The assumption that reproductive effort decreases somatic state, accelerating ageing, is central to our understanding of life-history variation. Maximal reproductive effort early in life is predicted to be maladaptive by accelerating ageing disproportionally, decreasing fitness. Optimality theory predicts that reproductive effort is restrained early in life to balance the fitness contribution of reproduction against the survival cost induced by the reproductive effort. When adaptive, the level of reproductive restraint is predicted to be inversely linked to the remaining life expectancy, potentially resulting in a terminal effort in the last period of reproduction. Experimental tests of the reproductive restraint hypothesis require manipulation of somatic state and subsequent investigation of reproductive effort and residual life span. To our knowledge the available evidence remains inconclusive, and hence reproductive restraint remains to be demonstrated. We modulated somatic state through a lifelong brood size manipulation in wild jackdaws and measured its consequences for age-dependent mortality and reproductive success. The assumption that lifelong increased brood size reduced somatic state was supported: Birds rearing enlarged broods showed subsequent increased rate of actuarial senescence, resulting in reduced residual life span. The treatment induced a reproductive response in later seasons: Egg volume and nestling survival were higher in subsequent seasons in the increased versus reduced broods' treatment group. We detected these increases in egg volume and nestling survival despite the expectation that in the absence of a change in reproductive effort, the reduced somatic state indicated by the increased mortality rate would result in lower reproductive output. This leads us to conclude that the higher reproductive success we observed was the result of higher reproductive effort. Our findings show that reproductive effort negatively covaries with remaining life expectancy, supporting optimality theory and confirming reproductive restraint as a key factor underpinning life-history variation

    40-Gbaud 16-QAM transmitter using tandem IQ modulators with binary driving electronic signals

    Get PDF
    We propose a novel 16-quadrature amplitude modulation (QAM) transmitter based on two cascaded IQ modulators driven by four separate binary electrical signals. The proposed 16-QAM transmitter features scalable configuration and stable performance with simple bias-control. Generation of 16-QAM signals at 40 Gbaud is experimentally demonstrated for the first time and visualized with a high speed constellation analyzer. The proposed modulator is also compared to two other schemes. We investigate the modulator bandwidth requirements and tolerance to accumulated chromatic dispersion through numerical simulations, and the minimum theoretical insertion attenuation is calculated analytically

    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds

    Get PDF
    Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 244 (2019): 502-521, doi:10.1016/j.gca.2018.09.034.Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different predepositional histories. Here, we examine down-core 14C profiles of higher plant leaf waxderived fatty acids isolated from high fidelity sedimentary sequences spanning the socalled “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as < 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences.Financial support was provided by a Schlanger Ocean Drilling Graduate Fellowship (NJD), an EPA STAR Graduate Fellowship (NJD), a Dutch NWO Veni grant #825.10.022 (JEV), US NSF grants #OCE-0137005 (TIE and KAH), #OCE-052626800 (TIE), #OCE-0961980 (ERMD), and #EAR-0447323 (ERMD and JRS), a Swiss SNF grant #200021_140850 (TIE), a Swedish Research Council grant #2013-05204 (MS), as well as the Stanley Watson Chair for Excellence in Oceanography at WHOI (TIE) and the WHOI Arctic Research Initiative (TIE and LG)

    Temporal deconvolution of vascular plant-derived fatty acids exported from terrestrial watersheds

    Get PDF
    Relatively little is known about the amount of time that lapses between the photosynthetic fixation of carbon by vascular land plants and its incorporation into the marine sedimentary record, yet the dynamics of terrestrial carbon sequestration have important implications for the carbon cycle. Vascular plant carbon may encounter multiple potential intermediate storage pools and transport trajectories, and the age of vascular plant carbon accumulating in marine sediments will reflect these different pre-depositional histories. Here, we examine down-core 14C profiles of higher plant leaf wax-derived fatty acids isolated from high fidelity sedimentary sequences spanning the so-called “bomb-spike”, and encompassing a ca. 60-degree latitudinal gradient from tropical (Cariaco Basin), temperate (Saanich Inlet), and polar (Mackenzie Delta) watersheds to constrain integrated vascular plant carbon storage/transport times (“residence times”). Using a modeling framework, we find that, in addition to a "young" (conditionally defined as &lt; 50 y) carbon pool, an old pool of compounds comprises 49 to 78 % of the fractional contribution of organic carbon (OC) and exhibits variable ages reflective of the environmental setting. For the Mackenzie Delta sediments, we find a mean age of the old pool of 28 ky (±9.4, standard deviation), indicating extensive pre-aging in permafrost soils, whereas the old pools in Saanich Inlet and Cariaco Basin sediments are younger, 7.9 (±5.0) and 2.4 (±0.50) to 3.2 (±0.54) ky, respectively, indicating less protracted storage in terrestrial reservoirs. The "young" pool showed clear annual contributions for Saanich Inlet and Mackenzie Delta sediments (comprising 24% and 16% of this pool, respectively), likely reflecting episodic transport of OC from steep hillside slopes surrounding Saanich Inlet and annual spring flood deposition in the Mackenzie Delta, respectively. Contributions of 5-10 year old OC to the Cariaco Basin show a short delay of OC inflow, potentially related to transport time to the offshore basin. Modeling results also indicate that the Mackenzie Delta has an influx of young but decadal material (20-30 years of age), pointing to the presence of an intermediate reservoir. Overall, these results show that a significant fraction of vascular plant C undergoes pre-aging in terrestrial reservoirs prior to accumulation in deltaic and marine sediments. The age distribution, reflecting both storage and transport times, likely depends on landscape-specific factors such as local topography, hydrographic characteristics, and mean annual temperature of the catchment, all of which affect the degree of soil buildup and preservation. We show that catchment-specific carbon residence times across landscapes can vary by an order of magnitude, with important implications both for carbon cycle studies and for the interpretation of molecular terrestrial paleoclimate records preserved in sedimentary sequences

    FjĂ€llbacka, VĂ€sterhavet, 1989–2019; Torhamn, södra Egentliga Östersjön, 2002–2019; KvĂ€döfjĂ€rden, Egentliga Östersjön, 1981–2019; Holmöarna, Bottniska viken, 1989–2019

    Get PDF
    Inom den nationella miljöövervakningen av kust och hav bedrivs Ă„rligen sedan slutet av 1980-talet ett program för integrerad kustfiskövervakning i fyra nationella referensomrĂ„den, ett vardera i Bottniska viken, Egentliga Östersjön, södra Egentliga Östersjön och VĂ€sterhavet. Syftet med programmet Ă€r att kartlĂ€gga fiskbestĂ„ndens status samt fiskens hĂ€lsotillstĂ„nd och miljögiftsbelastning för att upptĂ€cka förĂ€ndringar som indikerar storskalig pĂ„verkan av miljöhot som eutrofiering, miljögifter, klimatförĂ€ndringar och andra miljöfaktorer. Detta faktablad sammanfattar resultaten frĂ„n den integrerade kustfiskövervakningen i alla fyra omrĂ„den under tidsperioden 1980–2019

    Patchiness and Co-Existence of Indigenous and Invasive Mussels at Small Spatial Scales: The Interaction of Facilitation and Competition

    Get PDF
    Ecological theory predicts that two species with similar requirements will fail to show long-term co-existence in situations where shared resources are limiting, especially at spatial scales that are small relative to the size of the organisms. Two species of intertidal mussels, the indigenous Perna perna and the invasive Mytilus galloprovincialis, form mixed beds on the south coast of South Africa in a situation that has been stable for several generations of these species, even though these populations are often limited by the availability of space. We examined the spatial structure of these species where they co-exist at small spatial scales in the absence of apparent environmental heterogeneity at two sites, testing: whether conspecific aggregation of mussels can occur (using spatial Monte-Carlo tests); the degree of patchiness (using Korcak B patchiness exponent), and whether there was a relationship between percent cover and patchiness. We found that under certain circumstances there is non-random conspecific aggregation, but that in other circumstances there may be random distribution (i.e. the two species are mixed), so that spatial patterns are context-dependent. The relative cover of the species differed between sites, and within each site, the species with higher cover showed low Korcak B values (indicating low patchiness, i.e. the existence of fewer, larger patches), while the less abundant species showed the reverse, i.e. high patchiness. This relationship did not hold for either species within sites. We conclude that co-existence between these mussels is possible, even at small spatial scales because each species is an ecological engineer and, while they have been shown to compete for space, this is preceded by initial facilitation. We suggest that a patchy pattern of co-existence is possible because of a balance between direct (competitive) and indirect (facilitative) interactions

    Treatment of Rat Spinal Cord Injury with the Neurotrophic Factor Albumin-Oleic Acid: Translational Application for Paralysis, Spasticity and Pain

    Get PDF
    Sensorimotor dysfunction following incomplete spinal cord injury (iSCI) is often characterized by the debilitating symptoms of paralysis, spasticity and pain, which require treatment with novel pleiotropic pharmacological agents. Previous in vitro studies suggest that Albumin (Alb) and Oleic Acid (OA) may play a role together as an endogenous neurotrophic factor. Although Alb can promote basic recovery of motor function after iSCI, the therapeutic effect of OA or Alb-OA on a known translational measure of SCI associated with symptoms of spasticity and change in nociception has not been studied. Following T9 spinal contusion injury in Wistar rats, intrathecal treatment with: i) Saline, ii) Alb (0.4 nanomoles), iii) OA (80 nanomoles), iv) Alb-Elaidic acid (0.4/80 nanomoles), or v) Alb-OA (0.4/80 nanomoles) were evaluated on basic motor function, temporal summation of noxious reflex activity, and with a new test of descending modulation of spinal activity below the SCI up to one month after injury. Albumin, OA and Alb-OA treatment inhibited nociceptive Tibialis Anterior (TA) reflex activity. Moreover Alb-OA synergistically promoted early recovery of locomotor activity to 50±10% of control and promoted de novo phasic descending inhibition of TA noxious reflex activity to 47±5% following non-invasive electrical conditioning stimulation applied above the iSCI. Spinal L4–L5 immunohistochemistry demonstrated a unique increase in serotonin fibre innervation up to 4.2±1.1 and 2.3±0.3 fold within the dorsal and ventral horn respectively with Alb-OA treatment when compared to uninjured tissue, in addition to a reduction in NR1 NMDA receptor phosphorylation and microglia reactivity. Early recovery of voluntary motor function accompanied with tonic and de novo phasic descending inhibition of nociceptive TA flexor reflex activity following Alb-OA treatment, mediated via known endogenous spinal mechanisms of action, suggests a clinical application of this novel neurotrophic factor for the treatment of paralysis, spasticity and pain
    • 

    corecore